
Prepared by: Mujtaba Alshakhouri
Supervised by: Prof. Tim Bell 2011

Activity Name: Binary Number Representation in LED Lights

Student Level: Year 12

Satisfied Achievement
Standards:

2.44 (Binary Representation), 2.45 (Almost all), 2.46
(Almost all). Details inside.

Apparatus:

12Blocks programming environment, a Parallax
Propeller Demo board, 8 LED lights, a breadboard,
wires.

2 | P a g e

Contents
Activity Name: ... 1

Student Level: ... 1

Satisfied Achievement Standards: .. 1

Apparatus: ... 1

Summary: .. 3

I. Description of the Activity: ... 3

II. List of Areas of Achievement Standards Covered ... 5

III. Assembling the Apparatus: ... 6

IV. About the 12Blocks Language ... 7

V. Warming UP .. 7

VI. Writing the Program (With Details of the Standards mappings): ... 8

Phase 1: Writing the User Defined Function: ... 8

Phase 2: Writing an interactive program .. 14

VII. Complete Code in a Picture .. 17

VIII. Extensions/ Variations: ... 18

IX. Acknowledgment .. 19

3 | P a g e

Summary:

By completing this activity, students should gain the knowledge and understanding of

computer science concepts and programming experience required by the New Zealand

Digital Technologies Achievement Standards of 2.45, 2.46, and parts of 2.44. It aims to

deliver this knowledge to students through an engaging and entertaining experience.

It also has the added benefit of exposing students to some basic concepts in electronics.

Some achievement standards of electronics may in fact be covered by this activity. While

students with electronics background will be in an advantageous position, background in

electronics is not necessary as this guide provides all the details required to assemble the

apparatus. If desired, students could have the apparatus preassembled. This activity consists

of 2 phases with each phase building up on top of the previous one.

This activity guide assumes minimal prior knowledge of programming; hence it should be

accessible to a wider range of teachers and used confidently to run this activity in their

classes.

I. Description of the Activity:

Students will be using the 12Blocks programming language to write a modular and advanced

(as per 2.45 & 2.46 naming) program to control the states of LED lights. They will be

constructing a function/method to convert decimal numbers into binary representation. The

8 bit binary number result will then be used to control the on/off status of a corresponding

set of 8 LED lights representing the 8 bits. The end result would be having a representation

of binary numbers in LED light patterns!

The decimal numbers can be fed to the function as user input, or simply used statically

depending on how much of the standards teachers want to cover.

Students will need then to write another program to take user input and call the earlier

function passing it user’s input value. In case static decimal values were used, a similar

program also needs to be written that properly calls this function.

The final end result should be a program that asks the user for a decimal number of a

specific range and then it shows the binary representation of that number in LED light

pattern. In the case of static data being used, the program should simply show the same

result for the pre-determined values.

4 | P a g e

The program can be extended to include validation of user input, as well as other amusing

games like patterns of chasing lights (discussed later).

A demonstration video of the final product of this activity can be watched on

YouTube here: http://www.youtube.com/watch?v=wAhIGoDwydk

http://www.youtube.com/watch?v=wAhIGoDwydk

5 | P a g e

II. List of Areas of Achievement Standards Covered

The activity will (or can) cover the following areas of the achievement standards (2.44, 2.45,

and 2.46) as shown in detail below:

Area Covered Standard Notes

Understanding of binary representation of integers 2.44 A/M/E

Selecting and using appropriate data types 2.45 Achievement

Specifying variables for holding information 2.45 Achievement

Accessing and using data in indexed sequential data
structures (arrays)

2.45 & 2.46
 Achievement

Constructing a modular algorithmic structure 2.45 Achievement

Usage of expressions, iteration and selection control
structures

2.46
A/M/E

Construction & calling of multiple programmer defined
functions

2.46
A/M/E

Documenting the program (optional) 2.46 Achievement with Merit

Obtaining & using input data from user (Optional) 2.46 A/M/E

Testing with sample expected inputs 2.45 & 2.46 Achievement

Testing with expected & boundary data inputs (optional) 2.45 &2.46 Achievement with Merit
(both)

Testing with expected, boundary & exceptional data
inputs (optional)

2.45 Achievement with
Excellence

Specifying data for a test case for the task 2.45 Achievement

Comprehensive testing (optional) 2.46 Achievement with
Excellence

Well structured, maintainable, commented program
with explanatory variable names and named modules
(optional)

2.46
Achievement with
Excellence

Note: A/M/E stands for requirement by all three achievement levels.

6 | P a g e

III. Assembling the Apparatus:

If students have no prior background in basic electronics then it will be a good initial step to

watch the following video from Parallax Company, which covers almost all the details

needed to assemble the apparatus of this activity. The video can be watched on YouTube

here: http://www.youtube.com/watch?v=q_Q5s9AhCR0.

After watching the above video, the assembly should be quite easy to complete for

students. The Parallax Propeller Demo Board has 8 input pins (located in the black strip

beside the small breadboard) that are clearly labelled from P0 up to P7. The black strip has

also two positive pins (labelled VDD) and two negative pins (labelled VSS). The positive leg

(longer one) of each LED needs to be connected to one of the input pins separately. The

negative legs of all the LEDs can then be connected together all to one of the VSS pins.

Although in the pictures shown in this document no resistors were used when connecting

the LEDs, it will be a good idea to use proper resistors to protect the LEDs from getting

burned off. Since the embedded breadboard of the Propeller is quite small, students will

need a bigger external breadboard to make the connections properly. The following picture

clearly shows all the connections:

Additionally, a high resolution picture is also included with this guide.

http://www.youtube.com/watch?v=q_Q5s9AhCR0

7 | P a g e

 Acquiring the tools:

1) The Parallax Propeller Demo board can be order from the company’s official site at:

http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/555-

32100/List/0/SortField/4/ProductID/340/Default.aspx. It has a reference number of 555-

32100 and costs around 60 US dollars.

2) Wires, breadboards, and LEDs can be bought at any electronics shop. For those in

Christchurch, you can try South Land Component Centre (http://www.sicom.co.nz) or

JayCar Electronics (http://www.jaycar.co.nz/).

IV. About the 12Blocks Language

12Blocks is a visual and easy to use drop-and-drag programming language that is highly

suitable for educational purposes, especially at introductory levels. It is mainly targeted at

programming robots and microcontrollers and supports various types of devices. The best

way to have a quick overview of this language is to visit its official website at:

http://12blocks.com. The features page (http://12blocks.com/features.php) is a good place

to get started. Tutorials and sample programs can also be found on the main site.

V. Warming UP

Before students embark on writing the program, they should preferably spend some time

getting familiar with the apparatus and the 12Blocks programming language. After getting

familiar and comfortable with 12Blocks, a good start could be asking them to simply try to

get one of the LED lights turned on. They need to correctly match each of the LED lights with

the right pin on the Propeller board. An example code that will light up an LED connected to

pin 0 could be something as simple as this:

The picture below shows some of the other code blocks that students can try:

http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/555-32100/List/0/SortField/4/ProductID/340/Default.aspx
http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/555-32100/List/0/SortField/4/ProductID/340/Default.aspx
http://www.sicom.co.nz/
http://www.jaycar.co.nz/
http://12blocks.com/
http://12blocks.com/features.php

8 | P a g e

Students should now be encouraged to go through some of the other basic code blocks and

trying them out for themselves. This include trying some loops, conditional blocks, assigning

data to variables, printing values and strings to the screen, and reading user inputs.

The 12blocks is fairly a simple and straight forward language and is very readable as well.

Therefore, it would be more educationally rewarding for students if they were allowed to

plunge into it without prior demonstrations. Guidance and help should be provided

minimally and only when truly required. Care should be taken not to spoil the moment for

the student and let them enjoy the bliss and elation of solving a problem themselves. At the

same time, it is also important not to allow them to get desperate.

VI. Writing the Program (With Details of the Standards mappings):

As mentioned earlier, the activity should be completed in two phases. The first phase is to

construct the function/method that takes an integer value as a parameter, converts it to

binary, and feed the 8 binary bits to the corresponding pins in order to control the LED

lights.

Phase 1: Writing the User Defined Function:

STEP 1: Writing the function header (interface)

The functions tab in the library section of the 12Blocks programming environment has a

block that can be used to define a new function. The picture below shows how it looks like.

To define a new function simply drag the top angled block and rename the function with the

desired name. Parameters can be declared inside the brackets, separated by commas

(without space) if more than one is used.

9 | P a g e

For our purpose, the function we define needs to take one parameter (the integer). Thus

our function header can now look like this:

After defining the new function, it will appear in the functions section of the library similar

to this:

The new function (decToBinaryLED, in our case) can now simply be dragged and dropped

and used just as the other code blocks to build other programs.

A.S. Relevance:
constructing named modules (2.45 A/M/E), programmer defined
functions/methods (2.46 A/M/E)

STEP 2 (Optional): Comment

A ‘comment’ block (found in control section of library) can be used to add description of the

purpose of a particular piece of code. It is a good practice in programming to add

explanatory comments for user defined functions. Below is an example in 12Blocks.

10 | P a g e

A.S. Relevance: Documenting functions/methods (2.46 Achievement With Merit)

STEP 3 (Optional): Specifying a variable for holding the integer

Since we will be working on the integer value passed by the caller of

our function, it is a good practice to hold a copy of the passed user’s

value into a local variable and use this copy in our code, leaving the original copy intact. It is

not necessary to do this step as we could use the user’s value directly, but this practice

makes our code more maintainable. To complete this step we use the set method found in

the vars section of the library.

The first cell in the ‘set’ block takes the desired name of the variable while the second takes

the value. Our function should now look similar to this:

A.S. Relevance: Specifying variables for holding information (2.45 Achievement)

 Tip: It is necessary that the type of variable matches the type of the value that it will

hold. In our case, the value is of type number (for simplicity, 12Blocks has one type

for numbers called ‘number’). The ‘set’ code block that we used above accepts both

numbers and strings.

STEP 4: Converting to binary & lighting up the corresponding LED light

Now we have the value that we want to convert to binary. We need a way to find out the

binary representation of this value. 12Blocks provides a block called ‘get bit’ found in the

vars section of the library.

Since we intend to represent integer numbers up to 255, this means we will need to

consider 8 bits (bit 0 up to bit 7) for each value. This block retrieves a single bit at a time so

we will need to use it 8 times to read the values of all 8 bits. To do this effeciently, we need

11 | P a g e

to use a loop. 12Blocks has five types of loops which it call ‘repeat’. With a quick look at the

controls section of the library, we can easily see that the most suitable one would be that

shown below. This is because we can use the loop index to feed it to our get bit block to

make it advance accordingly from bit 0 to bit 7.

Once we know the binary value of a certain bit, we can then use it to cotrol the status of the

coressponding LED. For example, if bit 0 had a value of 1 then we need to light up the LED at

position 0. We do that by controlling the signal outputted on pin 0 as we have demonstrated

earlier. If bit 0 had a value of 0, then LED at position 0 needs to be off.

The picture below shows how the complete function would look like:

You can see that the index ‘n’ of the loop was fed to the ‘get bit’ code block so that, for

example, at loop 0, the get bit function would read bit 0... and so forth. The bit value was

then saved to a variable called ‘bitValue’. To control the corresponding pin, an if-statement

block was used to send a High signal to the pin only if the bit value was 1. If it was 0 then we

need to do nothing. The ‘set pin high’ block can be found in the pins section of the library.

A.S. Relevance:

Understanding of binary representation of integers (2.44 A/M/E), Usage
of expressions, iteration and selection control structures (2.46 A/M/E),
Accessing & using data in indexed sequential data structures (2.45 &
2.46 Achievement), Constructing a modular algorithmic structure (2.45
Achievement), Well structured, maintainable, commented program with
explanatory variable names and named modules (2.46 Achievement
with Excellence)

12 | P a g e

 Teacher’s Tip: The completed function shown above is obviously not the only way

to achieve the required result. Teachers however need to evaluate students based

on how well the function was actually implemented. For example, a student might

achieve the same result without using a loop; they might use the ‘get bit’ code block

8 times. This is where teachers can assess students competence. Students who

simply used 8 copies of the ‘get bit’ code block would probably be eligible for

“Achievement” while those who used a loop would be eligible for “Achievement with

Merit”. This is because the standard requires writing an advanced program that is

“well structured, maintainable, with explanatory variable names, module names,

and commented functions”. Similarly, the same applies to those who used proper

variable names vs those who did not, and those who used comment blocks vs those

who did not.

Step 5: Testing our function

Our function is now ready and should be working correctly. We need to test it to make sure

it does work. It can be tested simply like this:

Students can try different numbers to make sure all do work as expected.

A.S. Relevance:

Specifying data for a test case for the task (2.45 Achievement), Merit
requires inclusion of expected & boundary cases while Excellence
requires inclusion of exceptional cases (2.45). Testing and debugging
program on sample expected inputs (2.46 Achievement)

A competent student might go further by conducting an efficient and comprehensive testing

incorporating all expected, boundary and exceptional test data. This could be easily

achieved by building the folowing simple program:

13 | P a g e

 Tip: The purpose of the wait block is to put a convenient gap in time between each

number so our eyes can spot it. An important issue that must be considered carefully

when programming with 12Blocks is that variables are all global. This is why we used

a different index name here (t) in our loop. If we used the default index (n) which has

already been used in our function definition then the program will not work as

expected.

 Teacher’s Tip: A student doing something similar to the above testing tool would

probably be eligible for “Achievement with Excellence” as they have demonstrated

the awareness for the need to test on all possible input data.

A.S. Relevance:

Testing the algorithm on all test data (2.45 Achievement with
Excellence), Testing in an organized way on expected and boundary
inputs (2.46 Achievement with Merit), Comprehensive testing in an
organized and time effective way (2.46 Achievement with Excellence)

Step 6: Debugging and fixing bugs

A student who has implemented a testing tool like the one above will discover a bug in our

program. Essentially, the function we have implemented will send the signal ‘High’ to the

corresponding pins but the pins will remain outputting a High signal unless we send another

command to change the signal to Low (off). Thus, numbers will not be represented correctly

when the function is run consecutively.

To resolve this problem the student needs to use another block called ‘set pin low’. This can

be achieved by writing another simple function that loops over all 8 pins and reset them all

to Low. The below picture shows such a function:

The student can then use this function to reset all the pins after each number has been

displayed. A correctly working test program can now be built as follows:

14 | P a g e

A.S. Relevance:
Testing the program on all test data (2.45 with Excellence), Testing
and debugging on expected & boundary inputs (2.46 with Merit),
Comprehensive testing and debugging (2.46 with Excellence)

 Bonus Value: The above test program is itself an amusing and entertaining activity

and will greatly help students comprehend and appreciate the binary system. It also

makes it easy for students to spot the pattern for counting in binary by seeing how

lights come on/off and move one bit at a time to the left.

A demonstration video is available on YouTube for watching:

http://www.youtube.com/watch?v=ffuLAw2EeZM

We can now move to phase 2 of our activity where student will need to take input from the

user and display it in LED light binary pattern.

Phase 2: Writing an interactive program

Step 1: Reading user input

12Blocks make it very easy to read user input and use it. It has a convenient block to read

numbers and another similar block to read strings (text).

Both can be found in the terminal section of the library

and are shown on the left. The ‘receive number’ block can

be easily used as follows:

http://www.youtube.com/watch?v=ffuLAw2EeZM

15 | P a g e

This will allow the curser in the “Terminal” window to be in a state ready to accept user

input. Once the user types something and hits enter, the value will be immediately received

and stored in the x variable ready for usage. Preferably, we might want to print something

on the screen instructing the user on what to do before trying to read user input. The below

picture shows an example program that would read user input and feed it to our previously

developed function:

 Clarification: As you will quickly notice, the program prints an instruction message on

the screen and then waits for user input. Once user enters a number and hits enter, the

entered value is stored in the variable ‘intVal’. The function resetPins is then called

before calling the decToBinaryLED function. At first instant, it might look illogical to

reset first before lighting up the LEDs. However, resetting after lighting up the LEDs

would mean that as soon as the LEDs light up showing the binary number, they would

immediately go off making it impossible to actually see any result. By calling resetPins

first though, it means that the pins will not be sent a Low signal until the user enters

another number. This is because the program stops and waits for user input every time

just before calling the resetPins.

 Clarification: You will notice that an infinite repeat loop was used to keep the

program running indefinitely. This is the easiest way to make the program keeps asking

for user input. The Propeller board we used has only 8 input pins and does not have any

controllable buttons. If a different board with a controllable button was used, then

student can use that button (or add one if extra pins available) to start and stop the

program. The “When” and “Stop” blocks in the control section can be used for that

purpose.

A.S. Relevance: Obtaining & using input data from a user (2.46 A/M/E)

16 | P a g e

Step 2: Adding User Input Validation

Students should quickly realize that the user might enter invalid input to the program and

cause it to fail. Competent students should be able to enhance the above program by

handling user input properly and validating it before passing it to the decToBinaryLED

function.

An If-statement block can be used to check if the data entered by the user is within the

correct range expected or not. The function can then be called only if the data was ensured

to be within the accepted range. The picture below shows the enhanced program with user

input validation:

17 | P a g e

VII. Complete Code in a Picture

The complete program is now shown below. A 12Blocks file of the complete program is
included with this guide.

18 | P a g e

VIII. Extensions/ Variations:

Some other interesting variations of this LED binary number activity can be created. We

have already shown earlier one variation of these which is the LED binary counter. Another

variation could be an LED Chase Lights game where students use the function created

earlier to build another simple program that produces patterns of LED chase lights. For

example, students can try to display these specific numbers in sequence (1, 2, 4, 8, ...etc)

which when displayed in the LED binary representation will have a nice effect of light chase.

This activity is nicely demonstrated in this video on YouTube:

http://www.youtube.com/watch?v=KMzUFANTrgM

 Educational Value: The LED chase lights activity have a good educational value in

that it will require students to manually convert specific binary numbers into

decimal in order to feed them to the decToBinaryLED function so that the program

produces the correct pattern of light chase. Students can try first a one bit chase,

then two bits, etc.

A 12Blocks file of the complete program of this activity is included with this guide.

http://www.youtube.com/watch?v=KMzUFANTrgM

19 | P a g e

IX. Acknowledgment

We would like to give our sincere thanks to Prof. Tim Bell, who has supervised this project
and provided extensive help and advice while we worked on it. We also would like to give
our sincere appreciation and thanks to Hanno Sander (the developer and owner of 12Blocks
and the TBot) for his generous act of allowing us to use his tools free of charge and for his
kind help and support, without which we could not complete this project.

